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Abstract—In order to maximize the value of an organization’s data assets, it is important 

to keep data in its databases up-to-date. In the era of big data, however, constantly changing 
data sources make it a challenging task to assure data timeliness in enterprise systems. For 
instance, due to high frequency of purchase transactions, purchase data stored in an Enterprise 
Resource Planning (ERP) system can easily become outdated, affecting the accuracy of 
inventory data and the quality of inventory replenishment decisions. Despite the importance of 
data timeliness, updating a database as soon as new data arrives is typically not optimal because 
of high update cost. Therefore, a critical problem in this context is to determine the optimal 
update policy for database systems. In this study, we develop a Markov decision process model, 
solved via dynamic programming, to derive the optimal update policy that minimizes the sum 
of data staleness cost and update cost. Based on real-world enterprise data, we conduct 
experiments to evaluate the performance of the proposed update policy in relation to 
benchmark policies analyzed in the prior literature. The experimental results show that the 
proposed update policy outperforms fixed interval update policies and can lead to significant 
cost savings. 

Managerial Relevance — In the era of big data, most organizations understand the 

business value of data, and are collecting an unprecedented amount of data from different 
sources. For efficient decision support, such data should be kept up-to-date. However, the sheer 
volume of constantly changing data makes it increasingly difficult to achieve and maintain data 
timeliness. Therefore, more than ever, an efficient database update policy is critical if 
organizations want to maximize the value derived from their data assets. This research 
addresses this problem by developing a Markov decision process model to help decide when 
and how frequently an organization should update its database system. The aperiodic update 
policy derived in this study takes into consideration the tradeoffs between data staleness cost 
and update cost, and outperforms fixed interval policies proposed in the prior literature. As a 
result, the proposed policy can help maximize the value of organizations’ data assets. Moreover, 
we believe that the data update policy proposed in this research can be adapted to develop cost 
efficient maintenance policies for a wide range of tangible and intangible assets, and help 
organizations achieve significant financial savings. 

Index Terms— Data timeliness, update policy, data quality, Enterprise Resource Planning, 

Markov decision process   
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A Markov-based Update Policy for Constantly Changing Data in 

Database Systems 

I. INTRODUCTION AND MOTIVATION 

Keeping data up-to-date in a database system is critical in order to maximize the value of 

an organization’s data assets. However, constantly changing data sources often make it a 

challenging task to assure data timeliness in enterprise database systems. Because Enterprise 

Resource Planning (ERP) systems are one of the most widely adopted types of software 

systems in today’s organizations [1, 2], we use ERP systems to illustrate the challenges, the 

solutions, and the benefits of achieving data timeliness in a modern database systems.  

By integrating processes and data from internal functions of an organization and other 

sources, a successful ERP system can significantly improve the organization’s efficiency, 

productivity, and competitiveness in the marketplace [3, 4]. However, the advantages that an 

ERP provides for an organization depend on the quality of data it processes. In fact, data quality 

has been found to be one of the critical factors in the successful operation of ERP systems [5, 

6].  

In the era of big data, data often arrives from multiple sources at a high velocity, which 

brings great challenges to data management [7, 8]. Under this circumstance, organizations hope 

their data can be updated quickly to capture the data changes, so that at the time of application, 

current and high quality data can be extracted to support effective decision-making. In fact, 

data timeliness is identified as one of the most important data quality dimensions for database 

systems [9, 10]. This is because only when the data in an ERP system is kept current, can 

effective decisions be made. If the data in a database system is out of date, decisions made 
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based on obsolete data can be incorrect or ineffective, leading to possible financial losses. Take 

the inventory data in an ERP system as an example, if a new purchase order has been filled, 

but the new purchase data is not updated in the system in a timely manner, then the company 

may incur data staleness cost as a result of inefficient inventory replenishment decisions made 

based on the inaccurate and stale inventory data. 

An obvious solution for such data staleness problem is to update the database as soon as a 

change in the data source occurs, but such a policy is typically inefficient or even infeasible in 

practice, because it is very costly to keep the data in a database system up to date in real-time. 

Sometimes the database may be under heavy use to support business operations, hence the 

update has to be delayed. There are also scenarios where database update often cannot be 

completed without human intervention. In the latter case, the personnel cost could be much 

higher than the equipment and computation cost [11]. Furthermore, updating information 

systems frequently can affect system availability [12]. Therefore, to decide when and how to 

update data in a database system, we need to carefully construct analytical models to balance 

the trade-off between staleness cost and update cost. 

The remainder of the paper is organized as follows. Section 2 provides a brief introduction 

to the data timeliness problem and an overview of the main research efforts on data update 

policies in the prior literature. Section 3 introduces the purchase data update problem and the 

analytical models. The analysis of the optimal update policy and computation method is 

provided in Section 4. Section 5 reports on the experiments conducted to evaluate the 

effectiveness of the proposed update policy in relation to benchmark policies. Finally, Section 

6 presents some concluding remarks and discusses possible future research directions. 
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II. RELATED LITERATURE 

This section first provides an introduction to how data timeliness is defined in the extant 

literature, followed by a review of data update policies proposed in prior studies.  

A. Current Research on Data Timeliness 

Data timeliness has long been considered an important data quality dimension and needs 

improvement for effective decision making, especially in the age of big data[13]. Prior research 

has tried to define data timeliness and proposed various timeless metrics in different 

applications. Wand and Wang [14] defined timeliness as the delay between a change of a real 

world state and the resulting modification of the recorded state in an information system. 

Similarly, Lee and Strong [15] considered timeliness the extent to which the data was 

sufficiently up-to-date for the task at hand. Ballou and Pazer [16] provided a more general and 

pragmatic definition and employed currency and volatility to judge whether the data was out 

of date. Currency is the difference between the time when data changes in the real-world and 

the time when users use it for a certain task. Volatility refers to the average time interval that 

data remains valid.  

Based on the definitions in the aforementioned studies, we can see that data timeliness is 

affected by three important time instances, i.e. the time when data changes in the real world, 

the time when the changes are extracted and recorded in an information system, and the time 

when the data is delivered to the information users. The entire process and related events 

affecting data timeliness are depicted in Fig. 1.   
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Fig. 1. Events and classification of prior research on data timeliness. 

Based on the events affecting data timeliness shown in Fig. 1, the literature in the area of 

data timeliness can be classified into two research streams. The first research stream mainly 

focuses on improving data timeliness by quickly extracting and recording the data changes in 

the real-world into an information system, i.e. the data update policy for databases. The second 

research stream focuses on improving data timeliness by quickly delivering the data changes 

or the requested information quickly to information users. The second stream features mainly 

study on how to improve the efficiency of update policies [10, 17, 18], query processing 

algorithms [9, 19, 20], and system response speed [21, 22]. 

In this paper, the research problem we focus on designing optimal data update polices to 

achieve data timeliness. Data timeliness in this paper refers to the difference between the time 

when data changes in the real-world and the time when these changes are input into a database 

system, which corresponds to the first two events in Fig. 1. Therefore, our research belongs to 
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the first research stream and a more detailed review of the related literature on update policy is 

provided next.  

B. Current Research on Data Update Policy 

The process of updating the data contents in information systems to reflect the changes 

occurring at the data sources is termed as synchronization or materialized view maintenance in 

some prior studies. Chandy, Browne, Dissly and Uhrig [23] presented models and techniques 

to determine the optimal time interval for database checkpoints. Srivastava and Rotem [24] 

focused on the efficiency of data update operation and obtained the optimal update frequency 

based on a stochastic model by minimizing a linear weighted sum of the query waiting cost 

and processing cost. However, the data staleness cost was not explicitly considered in their 

research. Segev and Fang [25] designed and proposed the optimal time-based and query-based 

data update policies, respectively. The objective of their models was to minimize the currency 

on user queries rather than minimizing the data staleness cost. According to the different 

properties of updates and database views, Adelberg, Garcia-Molina and Kao [26] proposed 

some data update strategies by analyzing various properties of updates and views to balance 

the transaction deadlines with database currency. Ling and Mi [27] and Dey, Zhang and De [28] 

discussed a time-based update policy and designed the optimal update frequency by 

minimizing the total data staleness cost and synchronization cost. Mannino and Walter [29] 

explored the short-term and long-term influences of data refresh policies on the traditional 

information system success measures by conducting a field study. However, a common 

characteristic of these studies is that the optimal data update policies derived are mainly based 

on a fixed interval. That is to say, the database is updated after a fixed time interval, e.g., one 
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day/week after a fixed number of user queries have been received by a database, or after a fixed 

number of new data changes have arrived at a database. To increase the flexibility of data 

update process, we propose an aperiodic data update policy, illustrated using purchase data 

update in ERP systems, and test its effectiveness and optimality by comparing it with traditional 

fixed interval data update policies. Although aperiodic policies have been studied in [11] and 

[30], the former study focuses on refreshing the knowledge learned from data (e.g., association 

rules computed from sales data) instead of updating the data itself, and the decision variables, 

decision models, and cost function considered are also different from ours, leading to different 

update policies.  

III. DESCRIPTION ON RESEARCH PROBLEM AND MODEL 

Although the database update policy proposed in this study is applicable in a wide range 

of data and systems, as explained earlier, for ease of exposition, we use purchase data in an 

ERP system to motivate the problem and illustrate the model and solutions.  

A. Purchase Data Update Process in ERP Systems 

Purchase data plays an important role in decision-making in manufacturing companies. It 

is used not only for studying past purchase patterns, but also for updating inventory status of 

materials and products. For ease of illustration, we consider one type of information inquiry, 

i.e. inventory inquiry, to an ERP system. User inquiries of inventory status for materials are 

frequently posted to the ERP system to check the current inventory level and support inventory 

replenishment decisions. Due to the continuously arriving purchase data, the purchase and 

inventory data recorded previously may no longer be valid and accurate when an inventory 

inquiry arrives. Therefore, the purchase data in the ERP system needs to be updated in a timely 
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manner to reflect the changes occurring at purchase data sources and provide more accurate 

data to support inventory replenishment decisions. If the ERP system is not updated with the 

new purchase data, the inventory inquiry will receive outdated data, which can result in 

suboptimal decisions and possible financial losses to the company. Conversely, updating the 

ERP system immediately on the arrival of new purchase data can ensure the timeliness and 

freshness of the data, but the resulting frequent updates lead to higher update cost. Therefore, 

a decision regarding whether or not to update the ERP system has to be made when (or just 

before) an inventory inquiry arrives at the ERP system in a way that minimizes the sum of 

staleness cost and update cost. The timing of purchase data update decisions can be illustrated 

in Fig. 2.  

 

Fig. 2. Timing of purchase data update decisions. 

B. Definition and Description on the Research Model 

In Fig. 2, the data update decisions are discrete, i.e. the data update decision has to be made 

at each decision point, and each data update decision is only determined by the current system 

state instead of the previous system states. This conforms to the characteristics of Markov 

decision process. Therefore, we model the purchase data update problem in ERP as a Markov 

Purchase data Purchase data Purchase data Purchase data 

ERP System 

0 1 2 𝑛𝑛 𝑁𝑁 − 1 
 

𝑁𝑁 Time 

Inventory inquiry 𝑟𝑟1 
System time (decision point) 𝑡𝑡1 

Update decision 𝑑𝑑1 

Inventory inquiry 𝑟𝑟𝑚𝑚 
System time 𝑡𝑡𝑚𝑚 

Update decision 𝑑𝑑𝑚𝑚 

Inventory inquiry 𝑟𝑟𝑀𝑀 
System time 𝑡𝑡𝑀𝑀 
Update decision 𝑑𝑑𝑀𝑀 
 

𝑛𝑛 − 1 

. . . . . . . . . . . . 
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decision process. System state and transition probability are two indispensible parameters in a 

Markov decision process. Therefore in this section, we start with the definitions and analysis 

of system state and transition probability, followed by the derivation of system cost and 

objective function. The key notations used in this paper are listed in TABLE AI in the 

APPENDIX. 

C. Analysis of System State and Transition Probability 

Many prior studies have assumed that information inquiries and data updates to a database 

approximately follow a Poisson process [27, 28, 31]. Following the prior literature, we also 

assume that the arrival of new purchase data to an ERP system is characterized by a Poisson 

process with an intensity rate of λ𝑢𝑢 and that inventory inquiries arriving to an ERP system 

follow another independent Poisson process with an intensity rate of λ𝑟𝑟. The expected number 

of inventory inquiries submitted to an ERP system in a predetermined time horizon is denoted 

by 𝑀𝑀. The system time 𝑡𝑡𝑚𝑚 refers to the time when the 𝑚𝑚th inventory inquiry arrives at an 

ERP system, where 𝑚𝑚 = 1, 2, … ,𝑀𝑀. 𝑡𝑡𝑚𝑚 can also be considered the decision points because 

an update decision 𝑑𝑑𝑚𝑚 needs to be made when the 𝑚𝑚th inventory inquiry arrives at an ERP 

system. The update decision 𝑑𝑑𝑚𝑚 can take one of two possible values, 0 and 1. When 𝑑𝑑𝑚𝑚 = 0, 

it means that the ERP system is not updated. When 𝑑𝑑𝑚𝑚 = 1 , it indicates that the ERP system 

is updated with the accumulated purchase data incorporated into the system. As expected, the 

value of 𝑑𝑑𝑚𝑚 is determined by the system state 𝑠𝑠𝑚𝑚. In this study, we define system state 𝑠𝑠𝑚𝑚 

as the quantity of unprocessed purchase records accumulated by time 𝑡𝑡𝑚𝑚, where a purchase 

record describes the purchase details for a particular type of material, such as the material name, 

purchase date, purchase quantity, and purchase price, etc. The decision made at system time 
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𝑡𝑡𝑚𝑚 will affect the system state at the next system time 𝑡𝑡𝑚𝑚+1. Due to the different values of 

𝑑𝑑𝑚𝑚, the system state at the next decision point should be examined separately.  

If 𝑑𝑑𝑚𝑚 = 0, it means that the ERP system is not updated at system time 𝑡𝑡𝑚𝑚. As a result, 

the accumulated and unprocessed purchase data at time 𝑡𝑡𝑚𝑚 will be carried over to the next 

system time 𝑡𝑡𝑚𝑚+1 . Conversely, if 𝑑𝑑𝑚𝑚 = 1 , the ERP system is updated at system time 𝑡𝑡𝑚𝑚 . 

Then the accumulated purchase data at time 𝑡𝑡𝑚𝑚 will be integrated into the ERP system instead 

of being carried over to the next system time 𝑡𝑡𝑚𝑚+1. Therefore, the system state 𝑠𝑠𝑚𝑚+1 with 

different update decisions can be represented by: 

𝑠𝑠𝑚𝑚+1 = �
𝑠𝑠𝑚𝑚 + 𝐼𝐼𝑚𝑚,𝑚𝑚+1        𝑑𝑑𝑚𝑚 = 0,

      𝐼𝐼𝑚𝑚,𝑚𝑚+1             𝑑𝑑𝑚𝑚 = 1.                          (1) 

where 𝐼𝐼𝑚𝑚,𝑚𝑚+1 is the quantity of purchase data accumulated from time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑚𝑚+1. 

The system transition from the current system state 𝑠𝑠𝑚𝑚 to the next system state 𝑠𝑠𝑚𝑚+1 is 

captured by the transition probability 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 . As illustrated in Fig. 2, when the first 

inventory inquiry arrives at the ERP system at system time 𝑡𝑡1, an update decision 𝑑𝑑1 needs 

to be made under the current system state 𝑠𝑠1. After that, the ERP system stochastically transits 

to the next state 𝑠𝑠2 with a transition probability 𝑃𝑃𝑠𝑠1,𝑑𝑑1,𝑠𝑠2. At the system state 𝑠𝑠2, a decision 

𝑑𝑑2 is made and the ERP system stochastically transits to the next state 𝑠𝑠3 with a transition 

probability 𝑃𝑃𝑠𝑠2,𝑑𝑑2,𝑠𝑠3, and so on. Fig. 3 illustrates the process of system state transition during 

purchase data update in ERP systems.  
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Fig. 3. Process of system state transition. 

In the above analysis, we have assumed that the arrival of inventory inquiries follows a 

Poisson process with an intensity rate of λ𝑟𝑟. Under this assumption, the time interval between 

two successive inventory inquiries follows the exponential distribution with an intensity rate 

of λ𝑟𝑟. Therefore, the probability of the data quantity accumulated from time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑚𝑚+1, i.e. 

𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = ℎ�, takes the form, 

𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = ℎ� = ∫ 𝑃𝑃 �𝐼𝐼𝑚𝑚,𝑚𝑚+1 = ℎ�(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚)�∞
0 ∙ 𝑓𝑓(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚)𝑑𝑑(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚).  (2) 

where 𝑓𝑓(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚)  is the probability density function of time interval (𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚)  and 

𝑓𝑓(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚) = λ𝑟𝑟𝑒𝑒−λ𝑟𝑟∙𝑡𝑡. Let (𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚) = 𝑡𝑡, then Eq. (2) can be rewritten as: 

𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = ℎ� = � 𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = ℎ�𝑡𝑡�
∞

0
∙ 𝑓𝑓(𝑡𝑡)𝑑𝑑(𝑡𝑡) = �

𝑒𝑒−λ𝑢𝑢∙𝑡𝑡 ∙ (λ𝑢𝑢𝑡𝑡)ℎ

ℎ!

∞

0
∙ λ𝑟𝑟𝑒𝑒−λ𝑟𝑟∙𝑡𝑡𝑑𝑑𝑑𝑑 

 = (𝜆𝜆𝑢𝑢)ℎ∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)ℎ+1.                                              (3) 

There are two possible values for 𝑑𝑑𝑚𝑚 (𝑑𝑑𝑚𝑚 ∈ {0,1}), therefore the value of 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 

should be discussed separately. 

When 𝑑𝑑𝑚𝑚 = 0, from Eq. (1) we know that: 

𝐼𝐼𝑚𝑚,𝑚𝑚+1 = 𝑠𝑠𝑚𝑚+1 − 𝑠𝑠𝑚𝑚.                              (4) 

Replacing parameter ℎ in Eq. (3) with Eq. (4), we get: 

𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚=0,𝑠𝑠𝑚𝑚+1 = 𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = 𝑠𝑠𝑚𝑚+1 − 𝑠𝑠𝑚𝑚� = (𝜆𝜆𝑢𝑢)(𝑠𝑠𝑚𝑚+1−𝑠𝑠𝑚𝑚)∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑠𝑠𝑚𝑚+1−𝑠𝑠𝑚𝑚+1).           (5) 

When 𝑑𝑑𝑚𝑚 = 1, according to Eq. (1) we have: 

𝑑𝑑3 𝑑𝑑1 𝑑𝑑2 

𝑃𝑃𝑠𝑠1,𝑑𝑑1,𝑠𝑠2 𝑃𝑃𝑠𝑠2,𝑑𝑑2,𝑠𝑠3 
𝑠𝑠2 𝑠𝑠3  . . .  𝑠𝑠1 

𝑃𝑃𝑠𝑠𝑀𝑀−1,𝑑𝑑𝑀𝑀−1,𝑠𝑠𝑀𝑀 

𝑑𝑑𝑀𝑀−1 

𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1  

𝑑𝑑𝑚𝑚 
𝑠𝑠𝑚𝑚 𝑠𝑠𝑚𝑚+1  . . .  𝑠𝑠𝑀𝑀−1 

𝑑𝑑𝑀𝑀−2 
𝑠𝑠𝑀𝑀 

𝑃𝑃𝑠𝑠3,𝑑𝑑3,𝑠𝑠4 

𝑃𝑃𝑠𝑠𝑀𝑀−2,𝑑𝑑𝑀𝑀−2,𝑠𝑠𝑀𝑀−1  
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𝐼𝐼𝑚𝑚,𝑚𝑚+1 = 𝑠𝑠𝑚𝑚+1.                                (6) 

In this case, substituting ℎ in Eq. (3) with Eq. (6) yields: 

𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚=1,𝑠𝑠𝑚𝑚+1 = 𝑃𝑃�𝐼𝐼𝑚𝑚,𝑚𝑚+1 = 𝑠𝑠𝑚𝑚+1� = (𝜆𝜆𝑢𝑢)𝑠𝑠𝑚𝑚+1∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑠𝑠𝑚𝑚+1+1).              (7) 

D. Analysis of System Cost 

Due to the different cases of update decision made at system time 𝑡𝑡𝑚𝑚, the system cost 

 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚)  should also be discussed separately. If 𝑑𝑑𝑚𝑚 = 0 , i.e., the ERP system is not 

updated at system time 𝑡𝑡𝑚𝑚, hence the data obtained to answer the inventory inquiry 𝑟𝑟𝑚𝑚 is stale 

and the staleness cost is incurred, as represented by 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)  in Eq. (8) below. On the other 

hand, if 𝑑𝑑𝑚𝑚 = 1, i.e. the ERP system is updated at system time 𝑡𝑡𝑚𝑚, the staleness cost will be 

avoided but the update cost is incurred, as represented by 𝑐𝑐𝑢𝑢 in Eq. (8). In line with prior 

research (e.g., Dey et al. 2006), we assume that the update cost is a constant and independent 

of the amount of newly arriving data [28]. In this way, the system cost 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) at 𝑡𝑡𝑚𝑚 

with different update decisions can be defined by Eq. (8):  

𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) = � 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)    𝑑𝑑𝑚𝑚 = 0,
    𝑐𝑐𝑢𝑢          𝑑𝑑𝑚𝑚 = 1.                           (8) 

Based on the update decision and the corresponding cost at system time 𝑡𝑡𝑚𝑚 , we can 

formulate the objective function of the purchase data update problem as:  

𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∑ �𝑑𝑑𝑚𝑚 ∙ 𝑐𝑐𝑢𝑢 + (1 − 𝑑𝑑𝑚𝑚) ∙ 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)�𝑀𝑀
𝑚𝑚=1 �.                  (9) 

For the ease of analysis, Eq. (9) can be rewritten as: 

𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐1(𝑠𝑠1,𝑑𝑑1) + 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2) + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)�.              (10) 

The objective of problem (10) is to minimize the expected total system cost in a time 

horizon by finding the optimal sequence of update decisions 𝛿𝛿∗ at all decision points, i.e., 

𝛿𝛿∗ = (𝑑𝑑1∗,𝑑𝑑2∗ , … ,𝑑𝑑𝑀𝑀∗ ). If we consider one decision point at a time, the optimal update decision 
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𝑑𝑑𝑚𝑚∗  at time 𝑡𝑡𝑚𝑚 can be decided by comparing 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) with 𝑐𝑐𝑢𝑢. If 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) ≥ 𝑐𝑐𝑢𝑢, it is better to 

update the ERP system and therefore 𝑑𝑑𝑚𝑚∗ = 1. If 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) < 𝑐𝑐𝑢𝑢, the smaller data staleness cost 

indicates that there’s no need to update the EPR system, therefore 𝑑𝑑𝑚𝑚∗ = 0. However, with all 

decision points considered, the above mentioned simple method is generally not optimal. 

Therefore, we need to develop an efficient method to obtain the optimal update sequence for 

the entire time horizon. 

E. Analysis of Staleness Cost Function 

Staleness cost 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) reflects the effect of accumulated unprocessed purchase data on 

future purchase decisions. In an ERP system, if an inventory inquiry is answered by the stale 

data, the purchase decisions made based on those outdated inventory data will likely be 

inefficient and inaccurate, leading to the unnecessary purchase cost 𝑐𝑐𝑝𝑝 and inventory cost 𝑐𝑐𝐼𝐼. 

Therefore, in the present research the staleness cost 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) is defined as: 

𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹(𝑠𝑠𝑚𝑚),                           (11) 

where purchase cost 𝑐𝑐𝑝𝑝  and inventory cost 𝑐𝑐𝐼𝐼  are considered constant. 𝐹𝐹(𝑠𝑠𝑚𝑚) , which we 

refer to as the staleness severity function, represents the severity of inefficiency or financial 

loss as a result of data staleness in the ERP systems and is a function of system state 𝑠𝑠𝑚𝑚. Note 

that similar concept of staleness severity has been proposed in prior research (e.g., [27,28]). 

Recall that 𝑠𝑠𝑚𝑚 represents the accumulated quantity of unprocessed purchase data at time 𝑡𝑡𝑚𝑚, 

therefore, we can see from Eq. (11) that the staleness cost is dependent on the quantity of 

accumulated unprocessed purchase data at 𝑡𝑡𝑚𝑚. The larger the amount of unprocessed purchase 

data at 𝑡𝑡𝑚𝑚, the more likely the focal company will make inefficient inventory replenishment 

decisions, thus resulting in a higher staleness cost. Therefore, 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) is a monotone increasing 
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function in system state 𝑠𝑠𝑚𝑚 . Furthermore, we define 𝐹𝐹(𝑠𝑠𝑚𝑚) = 0  when 𝑠𝑠𝑚𝑚 = 0 . Then we 

have 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) = 0, indicating that if the quantity of unprocessed purchase data accumulated by 

time 𝑡𝑡𝑚𝑚 is zero, i.e., the purchase data in ERP system is up to date at 𝑡𝑡𝑚𝑚, then there will be 

no stale data and the staleness cost is zero. 

By analyzing the characteristics of Eq. (10), we can find that the staleness severity function 

𝐹𝐹(𝑠𝑠𝑚𝑚)  plays a critical role in determining the value of the objective function. Theorem 1 

describes the relationship between the optimal expected total system cost and the staleness 

severity function.  

THEOREM 1. For a same system state 𝑠𝑠𝑚𝑚, let 𝐶𝐶1 and 𝐶𝐶2 denote the optimal expected 

total system cost corresponding to staleness severity 𝐹𝐹1(𝑠𝑠𝑚𝑚)  and 𝐹𝐹2(𝑠𝑠𝑚𝑚) .  If 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥

𝐹𝐹2(𝑠𝑠𝑚𝑚) , then 𝐶𝐶1 ≥ 𝐶𝐶2 , where 𝑠𝑠𝑚𝑚 ∈ 𝑆𝑆  and 𝑚𝑚 = 1,2, … ,𝑀𝑀.  (All proofs are provided in the 

APPENDIX.) 

As explained earlier, 𝐹𝐹(𝑠𝑠𝑚𝑚) represents the severity of inefficiency or financial loss as a 

result of data staleness. Based on Theorem 1, for the same system state 𝑠𝑠𝑚𝑚, a higher value of 

𝐹𝐹(𝑠𝑠𝑚𝑚) indicates that the cost of stale data is higher. This shows from another perspective that 

the company with a higher staleness severity function is more sensitive to stale data, and 

therefore may put more emphasis on maintaining data timeliness for decisions making.   

IV. ALGORITHM FOR DERIVING THE OPTIMAL UPDATE POLICY 

In order to obtain the minimal expected total cost as specified in the objective function of 

problem (10), we need to examine all system state 𝑠𝑠𝑚𝑚 at each decision point 𝑑𝑑𝑚𝑚 for 𝑚𝑚 =

1,2, … ,𝑀𝑀. This seems impossible because the number of possible values of system state 𝑠𝑠𝑚𝑚 is 

infinite due to the stochastic nature of the accumulated purchase data at 𝑡𝑡𝑚𝑚. Fortunately, based 
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on the above analysis we can see that, each data update decision at each decision point is only 

determined by the current system state instead of the previous system states. Therefore, the 

entire update decision problem can be formulated as a Markov decision process. In this section, 

we analyze the properties of the objective function and the optimal update policy based on the 

Markov decision process. Then we propose a computation algorithm to derive the optimal 

update policy 𝛿𝛿∗ using a backward induction method. 

A. Analysis of the Optimal Update Policy  

Based on Eq. (10) and the theory of Markov decision process, we let  

𝑉𝑉1 = 𝐸𝐸(𝑐𝑐1(𝑠𝑠1,𝑑𝑑1) + 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2) + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)) 

represent the expected total system cost (value function) from time 𝑡𝑡1 to time 𝑡𝑡𝑀𝑀. Similarly, 

𝑉𝑉2 = 𝐸𝐸(𝑐𝑐2(𝑠𝑠2,𝑑𝑑2) + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)). 

represents the expected total system cost from time 𝑡𝑡2 to time 𝑡𝑡𝑀𝑀. Thus we have  

𝑉𝑉1 = 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1) + 𝑉𝑉2. 

and more generally,  

𝑉𝑉𝑚𝑚 = 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + 𝑉𝑉𝑚𝑚+1. 

That is to say, the value function 𝑉𝑉𝑚𝑚 at system time 𝑡𝑡𝑚𝑚 can be considered the sum of the 

system cost at current decision point 𝑡𝑡𝑚𝑚 and the value function at the next decision point 𝑡𝑡𝑚𝑚+1. 

When 𝑚𝑚 = 𝑀𝑀, let 𝑉𝑉𝑀𝑀+1 = 0 and we get  

𝑉𝑉𝑀𝑀 = 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀). 

Because the accumulated purchase data arriving to an ERP system is stochastic, all the 

possible values of accumulated purchase data quantity at each decision point should be 

considered. Therefore, we include the probability distribution of system state 𝑠𝑠𝑚𝑚 transiting to 
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𝑠𝑠𝑚𝑚+1 in the value function. Then, 𝑉𝑉𝑚𝑚 = 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + 𝑉𝑉𝑚𝑚+1 can be rewritten as: 

𝑉𝑉𝑚𝑚 = 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 ∙ 𝑉𝑉𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆  .                (12) 

where 𝑉𝑉𝑚𝑚 represents the expected total system cost from system time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀.  

Based on the principle of Markov decision process, to obtain the minimal expected total 

system cost 𝑉𝑉𝑚𝑚∗ , we must find a set of optimal update decision 𝛿𝛿𝑚𝑚∗  under the current system 

state 𝑠𝑠𝑚𝑚  that can minimize 𝑉𝑉𝑚𝑚 , where 𝛿𝛿𝑚𝑚∗ = (𝑑𝑑𝑚𝑚∗ ,𝑑𝑑𝑚𝑚+1
∗ , … ,𝑑𝑑𝑀𝑀∗ )  and 𝑚𝑚 = 1,2, … ,𝑀𝑀 . The 

optimal expected total system cost 𝑉𝑉𝑚𝑚∗  from system time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀 is defined as: 

  𝑉𝑉𝑚𝑚∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 ∙ 𝑉𝑉𝑚𝑚+1
∗

𝑠𝑠𝑚𝑚+1∈𝑆𝑆 �.             (13) 

When 𝑚𝑚 = 𝑀𝑀, we can get 𝑉𝑉𝑀𝑀∗ = 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) because 𝑉𝑉𝑀𝑀+1 = 0. 

From the above analysis, we know that 𝑉𝑉1∗ is the minimal expected total system cost from 

system time 𝑡𝑡1 to 𝑡𝑡𝑀𝑀. Considering that there are infinite number of possible system states at 

the start decision point 𝑡𝑡1, the optimal expected total system cost for all 𝑀𝑀 inventory inquiries 

in a time horizon can be represented by: 

𝐶𝐶 = ∑ 𝑉𝑉1∗ ∙𝑠𝑠1∈𝑆𝑆 𝑃𝑃𝑠𝑠1.                             (14) 

where 𝑃𝑃𝑠𝑠1 is the probability that the system state is 𝑠𝑠1 at time 𝑡𝑡1. 

As mentioned before, the system state 𝑠𝑠1 is represented by the quantity of accumulated 

unprocessed purchase data by time 𝑡𝑡1. Recall that 𝑡𝑡1 is the time that the first inventory inquiry 

arrives at the ERP system. Therefore, the data quantity accumulated by time 𝑡𝑡1 equals the data 

quantity accumulated from the start time of the time horizon to time 𝑡𝑡1. According to Eq. (3), 

𝑃𝑃𝑠𝑠1can be represented by: 

𝑃𝑃𝑠𝑠1 = 𝑃𝑃�𝐼𝐼0,1 = 𝑞𝑞� = (𝜆𝜆𝑢𝑢)𝑞𝑞∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)𝑞𝑞+1.                        (15) 

In order to obtain the optimal update policy from system time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀, we next analyze 
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the characteristics of 𝑉𝑉𝑚𝑚∗   and 𝑉𝑉𝑚𝑚 .  Based on the optimal expected total system cost 𝑉𝑉𝑚𝑚∗  

shown in Eq. (13), we define:  

𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) = 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 ∙  𝑉𝑉𝑚𝑚+1
∗

𝑠𝑠𝑚𝑚+1∈𝑆𝑆 .               (16) 

Then Eq. (13) can also be rewritten as  

𝑉𝑉𝑚𝑚∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚). 

One of the very important properties of Markov decision process is the optimality of 

monotone policies. It is obtained for the problem of maximizing an objective function. 

However, the objective function in this study is to minimize the expected total system cost. 

Therefore, we redefine our problem and transform the minimum objective function (Eq. (13)) 

into a maximum one: 

𝐺𝐺𝑚𝑚∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�−𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 ∙ 𝐺𝐺𝑚𝑚+1
∗

𝑠𝑠𝑚𝑚+1∈𝑆𝑆 �.                (17) 

where 𝐺𝐺𝑚𝑚∗  is the maximal reward from time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀 and 𝐺𝐺𝑚𝑚∗ = −𝑉𝑉𝑚𝑚∗ .   

Based on the optimality of monotone policies in Markov decision process [32], we obtain 

the following properties for problem (17): 

THEOREM 2. For problem (17), let 𝑚𝑚 = 1,2, … ,𝑀𝑀 − 1, if: 

1. −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is nonincreasing in 𝑠𝑠𝑚𝑚 for all 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷, 

2. ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆  is nondecreasing in 𝑠𝑠𝑚𝑚 for all 𝑠𝑠𝑚𝑚+1 ∈ 𝑆𝑆 and 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷, 

3. −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function on 𝑆𝑆 × 𝐷𝐷, 

4. ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗  is a superadditive function on 𝑆𝑆 × 𝐷𝐷 for all 𝑠𝑠𝑚𝑚+1 ∈ 𝑆𝑆, 

and 

5. −𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) is nonincreasing in 𝑠𝑠𝑚𝑚, 

then the optimal decision policy 𝑑𝑑𝑚𝑚∗  is monotone nondecreasing in system state 𝑠𝑠𝑚𝑚 for 𝑚𝑚 =
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1,2, … ,𝑀𝑀.   

We next provide the definition on superadditive (see Definition 1) and prove that each of 

the condition is required to get the monotone nondecreasing optimal policy.  Please refer to 

the APPENDIX for the detailed proof of Theorem 2. 

DEFINITON 1. A real-valued function 𝑔𝑔(𝑥𝑥,𝑦𝑦) on 𝑋𝑋 × 𝑌𝑌 is superadditive if for 𝑥𝑥+ ≥

𝑥𝑥− in 𝑋𝑋 and 𝑦𝑦+ ≥ 𝑦𝑦− in 𝑌𝑌:  

𝑔𝑔(𝑥𝑥+,𝑦𝑦+) + 𝑔𝑔(𝑥𝑥−,𝑦𝑦−) ≥ 𝑔𝑔(𝑥𝑥+,𝑦𝑦−) + 𝑔𝑔(𝑥𝑥−,𝑦𝑦+).                (18) 

From Eq. (13) and Eq. (16), we can see that the optimal expected total system cost 𝑉𝑉𝑚𝑚∗  

can be interpreted as the comparison result between the expected total system cost under an 

update decision 𝑅𝑅(𝑠𝑠𝑚𝑚, 𝑑𝑑𝑚𝑚 = 1) and the expected total system cost under a no update decision 

𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0). If 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) at system time 𝑡𝑡𝑚𝑚 is equal to or greater than 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 =

1), then updating the ERP system with the newly arriving purchase data is a better choice. 

Otherwise, it is better not to update he ERP system.   

From Theorem 2, we conclude that the optimal update policy 𝑑𝑑𝑚𝑚∗   is monotone 

nondecreasing in system state 𝑠𝑠𝑚𝑚 . We already know that 𝑑𝑑𝑚𝑚  is composed by 0 and 1. 

Therefore monotone nondecreasing of 𝑑𝑑𝑚𝑚∗  means that 𝑑𝑑𝑚𝑚∗  is increasing from 0 to 1. That is 

to say, there is a control limit 𝑙𝑙𝑚𝑚∗  for system state 𝑠𝑠𝑚𝑚 at each decision point determining the 

optimal update policy is 0 or 1 . The optimal update policy can be transformed into the form: 

𝑑𝑑𝑚𝑚∗ = �0             𝑠𝑠𝑚𝑚 < 𝑙𝑙𝑚𝑚∗  ,
1             𝑠𝑠𝑚𝑚 ≥ 𝑙𝑙𝑚𝑚 

∗ .                          (19) 

Based on Eq. (19), if the accumulated purchase data 𝑠𝑠𝑚𝑚 is less than the control limit 𝑙𝑙𝑚𝑚∗ , 

it is optimal not to update the system, and when the accumulated purchase data is equal to or 

greater than 𝑙𝑙𝑚𝑚∗ , it is optimal to update the system. Therefore, 𝑙𝑙𝑚𝑚∗  is the minimal quantity of 
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accumulated purchase data satisfying 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) ≥ 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1) and 𝑙𝑙𝑚𝑚∗ ∈ 𝑍𝑍+. In this 

way, the problem of finding the optimal update policy 𝛿𝛿∗ is reduced to that of determining the 

control limits 𝑙𝑙∗, where 𝑙𝑙∗ = (𝑙𝑙1∗, 𝑙𝑙2∗ , … , 𝑙𝑙𝑚𝑚∗ , … , 𝑙𝑙𝑀𝑀∗ ).  

B. The Computational Method 

Backward induction is an efficient method for solving Markov decision problem with a 

finite time horizon. Therefore, we design an algorithm to find the optimal update policy 𝑙𝑙∗ for 

the purchase data update problem based on the backward induction method. As explained 

before, the objective is to determine the control limit 𝑙𝑙𝑚𝑚∗  at each decision point, which is the 

minimal quantity of accumulated purchase data satisfying 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) ≥ 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1). 

After further analyzing 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚)  in Eq. (16), we find that it is impossible to directly 

calculate 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) ≥ 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1) for 𝑚𝑚 = 1,2, … ,𝑀𝑀, because at each step we need 

to compute  𝑉𝑉𝑚𝑚+1
∗   for an infinite number of possible system state 𝑠𝑠𝑚𝑚+1 . However, from 

Theorem 2, we know that the optimal decision policy 𝑑𝑑𝑚𝑚∗   is monotone nondecreasing in 

system state 𝑠𝑠𝑚𝑚  for 𝑚𝑚 = 1,2, … ,𝑀𝑀 . Therefore, we can compare and record the values of 

𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0)  and 𝑅𝑅(𝑠𝑠𝑚𝑚, 𝑑𝑑𝑚𝑚 = 1)  at each step when 𝑠𝑠𝑚𝑚  gradually increases from zero 

until the minimal 𝑠𝑠𝑚𝑚 makes 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) equal or larger than 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1). In fact, the 

minimal 𝑠𝑠𝑚𝑚 by solving 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) ≥ 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1) is the optimal control limit 𝑙𝑙𝑚𝑚∗  at 

each decision point. Furthermore, when 𝑚𝑚 = 𝑀𝑀 , we have 𝑅𝑅(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) = 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) , and 

when 𝑚𝑚 = 𝑀𝑀 − 1, … ,2,1, we have 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) = 𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) + ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 ∙  𝑉𝑉𝑚𝑚+1
∗

𝑠𝑠𝑚𝑚+1∈𝑆𝑆 , 

therefore we should consider the two different update decisions for 𝑅𝑅(𝑠𝑠𝑚𝑚, 𝑑𝑑𝑚𝑚) separately.   

In backward induction, we first obtain 𝑙𝑙𝑀𝑀∗ , which is the minimal quantity of accumulated 

purchase data at time 𝑡𝑡𝑀𝑀 that satisfies: 
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𝑅𝑅(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀 = 0) ≥ 𝑅𝑅(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀 = 1).                      (20) 

Based on Eqs. (8) and (16), and  𝑉𝑉𝑀𝑀+1∗ = 0, Eq. (20) is reduced to:  

𝑐𝑐𝑠𝑠(𝑠𝑠𝑀𝑀) ≥ 𝑐𝑐𝑢𝑢.                                (21) 

Similarly, for 𝑚𝑚 = 𝑀𝑀 − 1,𝑀𝑀 − 2, … ,2,1 , we need to check whether 𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) ≥

𝑅𝑅(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1) is satisfied as 𝑠𝑠𝑚𝑚 gradually increases from zero, a procedure that helps us 

obtain 𝑙𝑙𝑚𝑚∗  at each decision point. The complete algorithm is summarized in Fig. A1 in the 

APPENDIX.  

V. EXPERIMENTS AND RESULTS FOR PERFORMANCE EVALUATION 

To test the performance and effectiveness of the aperiodic purchase data update policy 

obtained from the proposed method, we conducted experiments based on a real-life dataset 

from the Hongmen Advanced Technology Co., Ltd. (or Hongmen for short) located in the Shen 

Zhen city in China (http://www.hongmen.com/). Hongmen has a history of almost 20 years, a 

registered capital of 66.8 million RMB, more than 550 employees. It is one of the largest gate 

manufacturers in China, and specializes in developing, designing, and producing over 21 series 

of products such as automatic gates, IC card intelligent systems, and intelligent parking 

management systems, etc. By the end of the year 2015, its total sales, cost of goods sold, and 

net profit have reached RMB257.353 million, RMB165.200 million, and RMB10.846 million, 

respectively. In May 2011, Hongmen invested more than 2,104,626 RMB to implement the 

SAP-R/3 ERP system which made up 90.98% of its total IT cost. The variety of products in 

this company require a wide variety of materials be purchased and managed, which brings a 

big challenge to maintain the timeliness of inventory data in its ERP system. We use parameter 

values estimated from real-life data from this company in our experiments. 
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A. Parameter Settings 

In this paper, the unit of time is set to be one day and the entire time horizon is one year or 

365 days in our experiments. According to the real operation situation in Hongmen, the arrival 

rate of new purchase data λ𝑢𝑢, representing the average number of purchase records arriving to 

the ERP system in one day, was set to 182. The inventory state was checked every seven days 

in the company, therefore the arrival rate of inventory inquiries λ𝑟𝑟  was 1/7. Based on 

information provided by the ERP system manager of Hongmen, the update cost 𝑐𝑐𝑢𝑢 consists 

of computation cost and personnel cost. Computation cost mainly includes the hardware and 

software cost incurred when updating the ERP system. According to the ERP system operation 

manager, the average maintenance cost on ERP hardware and software is RMB474,500 per 

year, and the average monthly salary for the material manager is RMB6,900. Hongmen 

estimated that the cost of running one update approximately equals one day’s of hardware and 

software maintenance cost and one day’s salary of the material manager. Hence, the unit 

computation cost and personal cost incurred when updating the ERP system were set to 

RMB1,300 (RMB474,500/365 days) and RMB230 (RMB6,900/30 days), respectively. 

Therefore, the total update cost 𝑐𝑐𝑢𝑢 was RMB1,530 (RMB1,300+ RMB230).   

Regarding the staleness cost, according to Eq. (11) and the earlier discussion, we know 

that the staleness cost, which takes the form of 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) = �𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼� ∙ 𝐹𝐹(𝑠𝑠𝑚𝑚), is a monotone 

increasing function, where 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝐼𝐼 are constants. Therefore, the staleness severity function 

𝐹𝐹(𝑠𝑠𝑚𝑚)  is also a monotone increasing function of its parameter, the system state 𝑠𝑠𝑚𝑚 . 

Depending on the real-world problem context, 𝐹𝐹(𝑠𝑠𝑚𝑚) can take different functional forms. For 

ease of analysis, one possibility is to use the cumulative distribution function (𝐶𝐶𝐶𝐶𝐶𝐶) of a certain 
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distribution to represent the monotonically increasing nature of this function. 

In the Hongmen Company, the average purchase cost (setup cost) is RMB1,000, mainly 

including the travel expense, mailing expense, and so on. The ordering policy in the company 

is similar to the (R,Q) policy, i.e., when the inventory position declines to or below the reorder 

point R, a batch quantity of size Q is ordered. Based on the calculation from the ERP database 

in Hongmen, the average purchase quantity Q is 150 units, the average reorder point R is 50 

units, the average holding cost per unit is 20 RMB. Therefore, the average inventory cost is 

2,500 RMB ((150/2+50)*20). In summary, the staleness cost can be rewritten as 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) =

3500 ∙ 𝐹𝐹(𝑠𝑠𝑚𝑚).   

B. Performance Analysis of the Update Policy 

The performance of the optimal purchase data update policy proposed in this paper is evaluated 

using the cost savings compared with the traditional data update policies based on the fixed 

interval. The three fixed interval update policies are described below [28]:  

1) Fixed time interval policy. This can also be called periodical policy which requires that 

the information system is updated after a fixed time interval, e.g. every five hours.  

2) Fixed inquiry interval policy. Under this policy, an information system should be 

immediately updated when it receives a fixed number of inquiries, e.g. after every five 

inquiries received by this system. 

3) Fixed update interval policy. This policy demands that an information system is updated 

after a fixed number of data updates have arrived at the system, e.g. when the number of 

accumulated new data is equal to or larger than five records. 

We define 𝐶𝐶, 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 as the optimal expected total system costs 
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obtained by implementing the aperiodic data update policy proposed in this study, the fixed 

time interval policy, the fixed inquiry interval policy, and the fixed update interval policy, 

respectively. Similarly, we let t’, i’ and u’ denote the percentages of cost savings achieved by 

the proposed aperiodic update policy over the three traditional fixed interval update policies.  

In the first set of experimental runs, we let 𝐹𝐹(𝑠𝑠𝑚𝑚) take the functional-form of the 𝐶𝐶𝐶𝐶𝐶𝐶 

of exponential distribution (represented by 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), i.e.,  

𝐹𝐹(𝑠𝑠𝑚𝑚) = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑚𝑚) = 1 − 𝑒𝑒−λ·𝑠𝑠𝑚𝑚.                    (22) 

where λ is a parameter of the function. It can be shown that this is a monotone increasing 

concave function of 𝑠𝑠𝑚𝑚 . To see the performance and advantages of the compared update 

policies, we conducted a series of experiments while changing the value of the parameter λ. 

The cost results and the percentage of cost savings achieved by proposed data update policy 

(in parenthesis) are summarized in TABLE I. For ease of comparison, we also plot the 

logarithms of expected total costs in Fig. 4.  

TABLE I 
 COMPARIONS OF EXPECTED TOTAL COST UNDER DIFFERENT DATA UPDATE 

POLICES 

 𝑪𝑪 𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 (t’) 𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (i’) 𝑪𝑪𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖  (u’) 

λ=0.0001 40246 53118 (24.2%) 61960 (35%) 53111 (24.2%) 

λ=0.0005 61073 118770 (48.6%) 162980 (62.5%) 118740 (48.6%) 

λ=0.001 67966 167970 (59.5%) 256600 (73.5%) 167900 (59.5%) 

λ=0.005 76544 375590 (79.6%) 963900 (92.1%) 375240 (79.6%) 

λ=0.01 77975 530560 (85.3%) 1844000 (95.8%) 529870 (85.3%) 

λ=0.05 79207 1197200 (93.4%) 9021700 (99.1%) 1191000 (93.3%) 

λ=0.1 79366 1807300 (95.6%) 17564000 (99.5%) 1663400 (95.2%) 

λ=0.5 79491 5807400 (98.6%) 73565000 (99.8%) 3424700 (97.7%) 
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Fig. 4. The logarithm of expected total cost in TABLE I 

The results in TABLE I and Fig. 4 show that the proposed aperiodic update policy 

consistently outperforms all three fixed interval update policies and can lead to significant cost 

savings. Another apparent result shown in TABLE I and Fig. 4 is that the optimal expected total 

system cost increases with the value of parameter λ. This is because the higher value of λ 

leads to a higher value of 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑚𝑚)  when system state 𝑠𝑠𝑚𝑚  is fixed. According to 

Theorem 1, the optimal expected total system cost also increases as a result. For the three fixed 

interval update polices, when the value of parameter λ gets higher, the system becomes more 

sensitive to the stale data and it has to be updated at a smaller interval. Therefore, the optimal 

expected total system cost is also increasing with  λ. Another noticeable result demonstrated 

in TABLE I and Fig. 4 is that among those three fixed interval update polices, the fixed update 

interval policy is better than the fixed time interval policy, which is in turn better than the fixed 

inquiry interval policy, i.e. 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. This is consistent with the findings of 

prior research [28]. 
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Additional experiments were conducted to examine the effect of different forms of 

staleness severity functions on the performances of different update policies. Specifically, in 

addition to the 𝐶𝐶𝐶𝐶𝐶𝐶  of exponential distribution, we tried two other monotone increasing 

functions with different curves. The logistic function (denoted by 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) shown in Eq. (23) 

represent a monotone increasing 𝑆𝑆 curve: 

𝐹𝐹(𝑠𝑠𝑚𝑚) = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑚𝑚) = 1
1+𝑒𝑒(𝛼𝛼−𝛽𝛽∙𝑠𝑠𝑚𝑚).                     (23) 

The 𝐶𝐶𝐶𝐶𝐶𝐶  of uniform distribution (denoted by 𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ) is a monotone increasing 

piecewise linear curve: 

𝐹𝐹(𝑠𝑠𝑚𝑚) =  𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑚𝑚) = �
0,                     𝑠𝑠𝑚𝑚 < 0 ,

𝑠𝑠𝑚𝑚
𝛿𝛿

,            0 ≤ 𝑠𝑠𝑚𝑚 < 𝛿𝛿,
1,                    𝑠𝑠𝑚𝑚 ≥ 𝛿𝛿.

                (24) 

As explained before, we need 𝐹𝐹(𝑠𝑠𝑚𝑚) = 0 when 𝑠𝑠𝑚𝑚 = 0. Although theoretically the value 

of 𝛼𝛼 in Eq. (23) needs to be infinite to meet this requirement, we set the value of 𝛼𝛼 to 15 

because such a value can already make 𝐹𝐹(𝑠𝑠𝑚𝑚) incredibly close to zero (0.0000003059). The 

comparison of the optimal expected total system costs under four data update policies and 

changing parameter values in two different staleness severity functions are shown in TABLE 

II. 

TABLE II 
 COMPARIONS OF EXPECTED TOTAL COST UNDER DIFFERENT UPDATE 

POLICIES AND STALENESS SEVERITY FUNCTIONS 

 Parameters 𝑪𝑪 𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(t’) 𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(i’) 𝑪𝑪𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(u’) 

 𝛽𝛽 = 0.001 7429.6 33154 (77.6%) 36598 (79.7%) 33151 (77.6%) 

𝛽𝛽 = 0.005 26907 74205 (63.7%) 91460 (70.6%) 74191 (63.7%) 

𝛽𝛽 = 0.01 39758 104940 (62.1%) 139450 (71.5%) 104910 (62.1%) 

𝛽𝛽 = 0.05 65862 234650 (71.9%) 424850 (84.5%) 234510 (71.9%) 
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𝛽𝛽 = 0.1 72004 335920 (78.6%) 786980 (90.9%) 335640 (78.5%) 

β = 0.5 77889 786320 (90.1%) 3954900 (98%) 784800 (90.1%) 

𝛽𝛽 = 1 78700 1112000 (92.9%) 7829900 (98.9%) 1109000 (92.9%) 

𝛿𝛿 = 100 79714 609080 (86.9%) 2404800 (96.7%) 608170 (86.9%) 

𝛿𝛿 = 500 75084 272390 (72.4%) 544790 (86.2%) 272210 (72.4%) 

𝛿𝛿 = 1000 70502 192610 (63.4%) 312280 (77.4%) 192520 (63.4%) 

𝛿𝛿 = 3000 58833 111200 (47.1%) 149950 (60.8%) 111170 (47.1%) 

𝛿𝛿 = 5000 51963 86137 (39.7%) 109390 (52.5%) 86119 (39.7%) 

𝛿𝛿 = 8000 45328 68097 (33.4%) 82629 (45.1%) 68086 (33.4%) 

𝛿𝛿 = 10000 42183 60908 (30.7%) 72533 (41.8%) 60899 (30.7%) 

𝛿𝛿 = 15000 36625 49728 (26.3%) 57477 (36.3%) 49722 (26.3%) 

 

Similar to Fig. 4, we plot the logarithms of expected total costs in Fig. 5 and Fig. 6, 

corresponding to logistic and uniform functions, respectively. 

 
Fig. 5. The logarithm of expected total cost with 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
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Fig. 6. The logarithm of expected total cost with 𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

Once again, the experimental results summarized in TABLE II and Figs. 5-6 show that the 

update policy proposed in this research consistently and significantly outperforms other three 

fixed interval update polices. When 𝐹𝐹(𝑠𝑠𝑚𝑚)  takes the logistic functional form, the optimal 

expected total costs of all the four data update policies increase with the value of 𝛽𝛽. This is 

because the value of 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is higher with a larger 𝛽𝛽 value. When 𝐹𝐹(𝑠𝑠𝑚𝑚) takes the form 

of the 𝐶𝐶𝐶𝐶𝐶𝐶 of uniform distribution, the expected total costs of all four data update policies 

decrease as the 𝛿𝛿  value increases. This is because with other factors fixed, the value of 

𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑚𝑚) decreases as the value of 𝛿𝛿 increases. From TABLE II and Figs. 5-6, we also 

observe that among the three fixed interval update policies, the fixed inquiry interval policy 

always incurs a higher cost than the fixed time interval policy and the fixed update interval 

policy, and the cost incurred by the fixed time interval policy is slightly higher than the fixed 

update interval policy. This result is also consistent with the previous study [28].   
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VI. CONCLUSIONS AND DISCUSSIONS 

Timeliness is one of the most important quality dimensions of data assets managed by 

organizations. However, in the era of big data, with the sheer volume of constantly changing 

data, how to achieve and maintain data timeliness in dynamic database systems has become a 

challenging yet unresolved operational issue to many organizations. This research tries to 

address this issue by helping organizations decide when and how frequently to update data in 

their database systems. We model the data update problem as a Markov decision process and 

design a dynamic planning algorithm to obtain the optimal update policy based on the 

backward induction method. A set of experiments, using three different types of staleness 

severity functions, are conducted to verify the performance of the proposed aperiodic data 

update policy. The results show that the proposed data update policy consistently and 

significantly outperforms the traditional fixed interval data update policies. 

This study has important practical implications for organizations. First, although fixed 

interval update policies might be easier to implement, given the amount of cost savings that 

can be achieved by the proposed aperiodic database update policy, organizations should explore 

the possibility of using aperiodic update policies to save costs. Second, the staleness severity 

function and other parameter values have a substantial impact on the optimal update policy. 

For this reason, efforts should be taken to make sure that that the staleness costs are accurately 

estimated. Third, although we illustrate the proposed update policy using ERP systems, we 

believe that the aperiodic update policy, with some adaptation, could be used for the 

maintenance of a wide range of data assets and applications such as patient medical record 

maintenance, GIS data update, and website maintenance, etc.  
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There are a few possible directions for future research, all involving improving or 

extending the aperiodic policy proposed in the present research. First, the proposed policy is 

developed for updating reliable and structured data such as purchase data. In other more 

complex general setting, data could arrive from multiple sources with varying degrees of 

reliability. One could extend the data update policy proposed in this study for processing and 

updating data from such more complex data sources. Second, the present study assumes that 

there is only one type of inquiries, the derived policy could be extended to cover scenarios 

where there is more than one type of inquiries. Third, it should be possible to derive a data 

update policy for more general scenarios where the arrival rate of purchase data or inventory 

inquiries changes with time, i.e., the parameters 𝜆𝜆𝑢𝑢 and 𝜆𝜆𝑟𝑟 are functions of time. 
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APPENDIX 

1. Key Notations. 

TABLE AI 
 SUMMARY OF NOTATIONS 

Parameter Description on the parameter 
𝑁𝑁 The time horizon of the purchase data update problem. 

𝑀𝑀 The average total number of inventory inquiries arriving at an ERP system in 
a time horizon. 

𝑟𝑟𝑚𝑚 The 𝑚𝑚th inventory inquiry arriving at an ERP system, 𝑚𝑚 = 1,2, … ,𝑀𝑀, 𝑚𝑚 ∈
𝑍𝑍+. 

𝑡𝑡𝑚𝑚 The time when the 𝑚𝑚th inventory inquiry arrives at an ERP system. 

𝑠𝑠𝑚𝑚 The system state at time 𝑡𝑡𝑚𝑚 , representing the accumulated quantity of 
unprocessed purchase data at time 𝑡𝑡𝑚𝑚 and 𝑠𝑠𝑚𝑚 ∈ 𝑍𝑍+. 

𝑆𝑆 The set of system state, 𝑠𝑠𝑚𝑚 ∈ 𝑆𝑆. 
𝐷𝐷 The decision set. 

𝑑𝑑𝑚𝑚 The decision made when the 𝑚𝑚th inventory inquiry arrives at an ERP system 
at time 𝑡𝑡𝑚𝑚, 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷 = {0,1}. 

𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1 
State transition probability, representing the probability that the system state 
𝑠𝑠𝑚𝑚 at time 𝑡𝑡𝑚𝑚 under decision 𝑑𝑑𝑚𝑚 transits to the system state 𝑠𝑠𝑚𝑚+1 at time 
𝑡𝑡𝑚𝑚+1. 

λ𝑢𝑢 The arrival rate of new purchase data in an ERP system. 
λ𝑟𝑟 The arrival rate of an inventory inquiry in an ERP system. 

𝐼𝐼𝑚𝑚−1,𝑚𝑚 The purchase data accumulated between time interval 𝑡𝑡𝑚𝑚−1 and 𝑡𝑡𝑚𝑚. 
𝑐𝑐𝑢𝑢 The update cost at time 𝑡𝑡𝑚𝑚. 

𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚) The staleness cost for inventory inquiry 𝑟𝑟 at time 𝑡𝑡𝑚𝑚 as a function of 𝑠𝑠𝑚𝑚. 
𝐹𝐹(𝑠𝑠𝑚𝑚) The data staleness severity function. 

𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) The system cost at time 𝑡𝑡𝑚𝑚 under decision 𝑑𝑑𝑚𝑚. 

𝐶𝐶 The optimal expected total system cost for 𝑀𝑀 inventory inquiries in a time 
horizon. 

𝑉𝑉𝑚𝑚 The expected total system cost from time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀, 𝑉𝑉𝑚𝑚 ≥ 0. 

𝛿𝛿 The update policy in a time horizon, i.e. the update decision made at each 
decision point, 𝛿𝛿 = (𝑑𝑑1,𝑑𝑑2, … , 𝑑𝑑𝑀𝑀). 

𝛿𝛿𝑚𝑚∗  The optimal update policy from time 𝑡𝑡𝑚𝑚 to 𝑡𝑡𝑀𝑀, 𝛿𝛿𝑚𝑚∗ = (𝑑𝑑𝑚𝑚∗ ,𝑑𝑑𝑚𝑚+1
∗ , … ,𝑑𝑑𝑀𝑀∗ ). 

𝑙𝑙𝑚𝑚∗  The optimal control limit at time 𝑡𝑡𝑚𝑚, 𝑙𝑙𝑚𝑚∗ ∈ 𝑍𝑍+. 
𝑙𝑙∗ The optimal control limit for system state, where 𝑙𝑙∗ = (𝑙𝑙1∗, 𝑙𝑙2∗ , … , 𝑙𝑙𝑚𝑚∗ , … , 𝑙𝑙𝑀𝑀∗ ). 

 

2. Proof of Theorem 1:  

PROOF.  Let 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚) . According to Eq. (9) and Eq. (10), the optimal expected 
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total system cost can be written as 𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐1(𝑠𝑠1,𝑑𝑑1) + 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2) + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)�. 

Let 𝐶𝐶′  and 𝐶𝐶′′  represent the expected total system cost by applying data staleness 

function 𝐹𝐹1(𝑠𝑠𝑚𝑚)  and 𝐹𝐹2(𝑠𝑠𝑚𝑚) , respectively.  𝑑𝑑𝑚𝑚∗
′  and 𝑑𝑑𝑚𝑚∗

′′  denote the optimal update 

policy at time 𝑡𝑡𝑚𝑚 under different staleness functions. Therefore we can get: 

𝐶𝐶′ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ + 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2)′ + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)′) and 

𝐶𝐶′′ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ + 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2)′′ + ⋯+ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)′′).  

For 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ and 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′, when 𝑑𝑑1∗
′ = 𝑑𝑑1∗

′′ = 0, according to Eq. (8) and Eq. (11), 

we have 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹1(𝑠𝑠𝑚𝑚)  and 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹2(𝑠𝑠𝑚𝑚) . Therefore 

we can get 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ ≥ 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ for 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). 

When 𝑑𝑑1∗
′ = 𝑑𝑑1∗

′′ = 1, according to Eq. (8) and Eq. (11), we have 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ = 𝑐𝑐𝑢𝑢 and 

𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ = 𝑐𝑐𝑢𝑢. Therefore we can get 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ = 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ for 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). 

When 𝑑𝑑1∗
′ = 1 and 𝑑𝑑1∗

′′ = 0, according to Eq. (8) and Eq. (11), we have 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ =

𝑐𝑐𝑢𝑢  and 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹2(𝑠𝑠𝑚𝑚) . 𝑑𝑑1∗
′′ = 0  indicates that the data staleness cost is 

smaller than the update cost at time 𝑡𝑡1, i.e., 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹2(𝑠𝑠𝑚𝑚) < 𝑐𝑐𝑢𝑢. Therefore 

we have 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ > 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ for 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). 

At last, when 𝑑𝑑1∗
′ = 0 and 𝑑𝑑1∗

′′ = 1, according to Eq. (8) and Eq. (11), we can conclude 

that 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ = (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹1(𝑠𝑠𝑚𝑚)  and 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ = 𝑐𝑐𝑢𝑢 . 𝑑𝑑1∗
′ = 0  indicates that the data 

staleness cost is smaller than the data update cost, i.e.,: 

   (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹1(𝑠𝑠𝑚𝑚) < 𝑐𝑐𝑢𝑢                             (A1) 

While 𝑑𝑑1∗
′′ = 1 indicates that the data staleness cost is equal to or larger than the data 

update cost, i.e., 

                         (𝑐𝑐𝑝𝑝 + 𝑐𝑐𝐼𝐼) ∙ 𝐹𝐹2(𝑠𝑠𝑚𝑚) ≥ 𝑐𝑐𝑢𝑢                           (A2) 
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Based on Eq. (A1) and Eq. (A2), we know that 𝐹𝐹2(𝑠𝑠𝑚𝑚) > 𝐹𝐹1(𝑠𝑠𝑚𝑚) which contradicts the 

assumption 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). That is to say, the condition when 𝑑𝑑1∗
′ = 0 and 𝑑𝑑1∗

′′ = 1 is 

false and therefore no need to be considered for the next analysis. 

Therefore we can get 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′ ≥ 𝑐𝑐1(𝑠𝑠1,𝑑𝑑1)′′ for 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). 

By the above analogy, we can get that 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2)′ ≥ 𝑐𝑐2(𝑠𝑠2,𝑑𝑑2)′′, 𝑐𝑐3(𝑠𝑠3,𝑑𝑑3)′ ≥

𝑐𝑐3(𝑠𝑠3,𝑑𝑑3)′′ until 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)′ ≥ 𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)′′. Therefore 𝐶𝐶′ ≥ 𝐶𝐶′′ for 𝐹𝐹1(𝑠𝑠𝑚𝑚) ≥ 𝐹𝐹2(𝑠𝑠𝑚𝑚). 

In summary, the optimal expected total system cost is increasing in the value of staleness 

function 𝐹𝐹(𝑠𝑠𝑚𝑚) when 𝑠𝑠𝑚𝑚 is fixed. 

3. Proof of Theorem 2: 

1) −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is nonincreasing in 𝑠𝑠𝑚𝑚 for all 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷. 

PROOF.  When 𝑑𝑑𝑚𝑚 = 0, in Eq. (8), we know −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 0) = −𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚). According to 

Eq. (11), 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)  is an increasing function in system state 𝑠𝑠𝑚𝑚 , therefore −𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚)  is 

nonincreasing when 𝑑𝑑𝑚𝑚 = 0 . When 𝑑𝑑𝑚𝑚 = 1 , −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚 = 1) = −𝑐𝑐𝑢𝑢 , where 𝑐𝑐𝑢𝑢  is a 

constant. In summary, −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is nonincreasing in 𝑠𝑠𝑚𝑚 for all 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷. 

2)  ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆  is nondecreasing in 𝑠𝑠𝑚𝑚 for all 𝑠𝑠𝑚𝑚+1 ∈ 𝑆𝑆 and 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷. 

PROOF.  Let 𝑠𝑠𝑚𝑚 = 𝑎𝑎𝑚𝑚, 𝑠𝑠𝑚𝑚+1 = 𝑎𝑎𝑛𝑛. Due to the different cases for 𝑑𝑑𝑚𝑚, the proof process 

should be conducted respectively.  

When 𝑑𝑑𝑚𝑚 = 0, according to Eq. (5), we have: 

 ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚=0,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 = ∑ (𝜆𝜆𝑢𝑢)(𝑠𝑠𝑚𝑚+1−𝑠𝑠𝑚𝑚)∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑠𝑠𝑚𝑚+1−𝑠𝑠𝑚𝑚+1)𝑠𝑠𝑚𝑚+1∈𝑆𝑆   

= ∑ (𝜆𝜆𝑢𝑢)(𝑎𝑎𝑛𝑛−𝑎𝑎𝑚𝑚)∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑎𝑎𝑛𝑛−𝑎𝑎𝑚𝑚+1)

∞
𝑠𝑠𝑚𝑚+1=𝑎𝑎𝑛𝑛   

= 𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)  ∙ ∑ � 𝜆𝜆𝑢𝑢

𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟
�

(𝑎𝑎𝑛𝑛−𝑎𝑎𝑚𝑚)
∞
𝑠𝑠𝑚𝑚+1=𝑎𝑎𝑛𝑛     
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= 𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)  ∙

� 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
(𝑎𝑎𝑛𝑛−𝑎𝑎𝑚𝑚)

1− 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

  

= � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
(𝑎𝑎𝑛𝑛−𝑎𝑎𝑚𝑚)

                                

(A3) 

Eq. (A3) can be rewritten as  �𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟
𝜆𝜆𝑢𝑢

�
(𝑎𝑎𝑚𝑚−𝑎𝑎𝑛𝑛)

 , where 𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟
𝜆𝜆𝑢𝑢

> 1  and 𝑠𝑠𝑚𝑚 = 𝑎𝑎𝑚𝑚 . 

Therefore, Eq. (A3) is nondecreasing in 𝑠𝑠𝑚𝑚 when 𝑑𝑑𝑚𝑚 = 0. 

When 𝑑𝑑𝑚𝑚 = 1, according to Eq. (7), we have: ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚=1,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 =

∑ (𝜆𝜆𝑢𝑢)𝑠𝑠𝑚𝑚+1∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑠𝑠𝑚𝑚+1+1)𝑠𝑠𝑚𝑚+1∈𝑆𝑆   

= ∑ (𝜆𝜆𝑢𝑢)𝑎𝑎𝑛𝑛∙𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)(𝑎𝑎𝑛𝑛+1)

∞
𝑠𝑠𝑚𝑚+1=𝑎𝑎𝑛𝑛  = 𝜆𝜆𝑟𝑟

(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)  ∙

∑ � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
𝑎𝑎𝑛𝑛∞

𝑠𝑠𝑚𝑚+1=𝑎𝑎𝑛𝑛   

= 𝜆𝜆𝑟𝑟
(𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟)  ∙

� 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
𝑎𝑎𝑛𝑛

1− 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

  

              = � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
𝑎𝑎𝑛𝑛

                             (A4) 

There is no 𝑎𝑎𝑚𝑚 in Eq. (A4), therefore Eq. (A4) is a constant when 𝑑𝑑𝑚𝑚 = 1.  

Based on the above analysis, ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆  is nondecreasing in 𝑠𝑠𝑚𝑚 for all 𝑠𝑠𝑚𝑚+1 ∈

𝑆𝑆 and 𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷. 

3) −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function on 𝑆𝑆 × 𝐷𝐷. 

PROOF. Assume 𝑠𝑠+ ≥ 𝑠𝑠− . First, when 𝑑𝑑+ > 𝑑𝑑− , i.e. 𝑑𝑑+ = 1  and 𝑑𝑑− = 0 , according to 

Definition 2 and Eq. (8), we have: 

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] = −𝑐𝑐𝑢𝑢 + [−𝑐𝑐𝑠𝑠(𝑠𝑠−)] 

and 

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)] = −𝑐𝑐𝑠𝑠(𝑠𝑠+) + (−𝑐𝑐𝑢𝑢)’ 

𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)  is increasing in 𝑠𝑠𝑚𝑚 , therefore 𝑐𝑐𝑠𝑠(𝑠𝑠+) ≥ 𝑐𝑐𝑠𝑠(𝑠𝑠−)  for 𝑠𝑠+ ≥ 𝑠𝑠− . Hence 
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[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] ≥ [−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)]  for 𝑠𝑠+ ≥ 𝑠𝑠−  and 

𝑑𝑑+ > 𝑑𝑑−, which means −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function. 

When 𝑑𝑑+ = 𝑑𝑑− = 0, according to Definition 2 and Eq. (8), we have: 

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] = [−𝑐𝑐𝑠𝑠(𝑠𝑠+)] + [−𝑐𝑐𝑠𝑠(𝑠𝑠−)] 

and 

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)] = [−𝑐𝑐𝑠𝑠(𝑠𝑠+)] + [−𝑐𝑐𝑠𝑠(𝑠𝑠−)] 

Therefore, [−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] = [−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)]  for 

𝑠𝑠+ ≥ 𝑠𝑠− and 𝑑𝑑+ = 𝑑𝑑− = 0, which means −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function. 

Last when 𝑑𝑑+ = 𝑑𝑑− = 1, according to Definition 2 and Eq. (8), we have: 

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] = (−𝑐𝑐𝑢𝑢) + (−𝑐𝑐𝑢𝑢) 

and  

[−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)] = (−𝑐𝑐𝑢𝑢) + (−𝑐𝑐𝑢𝑢) 

Therefore, [−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑+)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑−)] = [−𝑐𝑐𝑚𝑚(𝑠𝑠+,𝑑𝑑−)] + [−𝑐𝑐𝑚𝑚(𝑠𝑠−,𝑑𝑑+)]  for 

𝑠𝑠+ ≥ 𝑠𝑠− and 𝑑𝑑+ = 𝑑𝑑− = 1, which means −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function. 

In summary, −𝑐𝑐𝑚𝑚(𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚) is a superadditive function on 𝑆𝑆 × 𝐷𝐷. 

4) ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗  is a superadditive function on 𝑆𝑆 × 𝐷𝐷 for all 𝑠𝑠𝑚𝑚+1 ∈ 𝑆𝑆. 

PROOF.  Assume 𝑠𝑠+ ≥ 𝑠𝑠−  and 𝑑𝑑+ ≥ 𝑑𝑑− .According to Definition 2, to prove that 

∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙ 𝐺𝐺𝑚𝑚+1 is a superadditive function, we must prove that: 

∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑+,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗ + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑−,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1

∗   

≥ ∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑−,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗ + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑+,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙

 𝐺𝐺𝑚𝑚+1
∗   

When 𝑑𝑑+ > 𝑑𝑑−, i.e. 𝑑𝑑+ = 1 and 𝑑𝑑− = 0, by Definition 2 and Eq. (A3) and Eq. (A4), 
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we have: 

∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 = � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
𝑠𝑠𝑚𝑚+1

+ � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
(𝑠𝑠𝑚𝑚+1−𝑠𝑠−)

  

and 

∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 = � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
�𝑠𝑠𝑚𝑚+1−𝑠𝑠+�

+ � 𝜆𝜆𝑢𝑢
𝜆𝜆𝑢𝑢+𝜆𝜆𝑟𝑟

�
𝑠𝑠𝑚𝑚+1

  

We have proved that ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆  is nondecreasing in 𝑠𝑠𝑚𝑚, therefore for 𝑠𝑠+ ≥ 𝑠𝑠−, 

we can get: 

 ∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆     

    ≤ ∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆             (A5) 

Eq. (A5) can be rewritten as: 

−∑ �𝑃𝑃𝑠𝑠+,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1 + 𝑃𝑃𝑠𝑠−,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1�𝑠𝑠𝑚𝑚+1∈𝑆𝑆   

 ≥ −∑ �𝑃𝑃𝑠𝑠+,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1 + 𝑃𝑃𝑠𝑠−,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1�𝑠𝑠𝑚𝑚+1∈𝑆𝑆    

We know 𝑉𝑉𝑚𝑚∗ ≥ 0 for all 𝑠𝑠𝑚𝑚 ∈ 𝑆𝑆, therefore we can get: 

−∑ �𝑃𝑃𝑠𝑠+,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1 + 𝑃𝑃𝑠𝑠−,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1�𝑠𝑠𝑚𝑚+1∈𝑆𝑆 𝑉𝑉𝑚𝑚+1
∗   

 ≥ −∑ �𝑃𝑃𝑠𝑠+,𝑑𝑑−=0,𝑠𝑠𝑚𝑚+1 + 𝑃𝑃𝑠𝑠−,𝑑𝑑+=1,𝑠𝑠𝑚𝑚+1�𝑉𝑉𝑚𝑚+1
∗

𝑠𝑠𝑚𝑚+1∈𝑆𝑆        (A6) 

Since 𝐺𝐺𝑚𝑚∗ = −𝑉𝑉𝑚𝑚∗ , therefore Eq. (A6) can be rewritten as: 

∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑+,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗ + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑−,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1

∗   

≥ ∑ 𝑃𝑃𝑠𝑠+,𝑑𝑑−,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗ + ∑ 𝑃𝑃𝑠𝑠−,𝑑𝑑+,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙

 𝐺𝐺𝑚𝑚+1
∗   

Therefore, ∑ 𝑃𝑃𝑠𝑠𝑚𝑚,𝑑𝑑𝑚𝑚,𝑠𝑠𝑚𝑚+1𝑠𝑠𝑚𝑚+1∈𝑆𝑆 ∙  𝐺𝐺𝑚𝑚+1
∗   is a superadditive function on 𝑆𝑆 × 𝐷𝐷  for all 

𝑠𝑠𝑚𝑚+1 ∈ 𝑆𝑆. 

5) −𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) is nonincreasing in 𝑠𝑠𝑚𝑚. 

PROOF.  According to Eq. (8), when 𝑚𝑚 = 𝑀𝑀 and 𝑑𝑑𝑀𝑀 = 0, −𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀 = 0) = −𝑐𝑐𝑠𝑠(𝑠𝑠𝑀𝑀). 
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According to the analysis before, 𝑐𝑐𝑠𝑠(𝑠𝑠𝑚𝑚)  is an increasing function in system state 𝑠𝑠𝑚𝑚 , 

therefore −𝑐𝑐𝑠𝑠(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀)  is nonincreasing when 𝑑𝑑𝑀𝑀 = 0 . When 𝑑𝑑𝑀𝑀 = 1 , −𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀 =

1) = −𝑐𝑐𝑢𝑢, where 𝑐𝑐𝑢𝑢 is a constant. In summary, −𝑐𝑐𝑀𝑀(𝑠𝑠𝑀𝑀,𝑑𝑑𝑀𝑀) is nonincreasing in 𝑠𝑠𝑚𝑚 for all 

𝑑𝑑𝑚𝑚 ∈ 𝐷𝐷. 

4. Algorithms for obtaining the control limits. 



www.manaraa.com

41 

 

Fig. A1. Algorithms for obtaining the control limits. 
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